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Abstract— Cardiovascular disease is the leading cause of
death in the world. A program of cardiac rehabilitation (CR) is
related to physical activities or exercises to regain the optimal
quality of life. CR relies on the necessity to evaluate, control
and supervise a patient’s status and progress. This work has
two objectives: on the one hand, provide a tool for clinicians to
assess the patient’s status during CR. On the other hand, there
is evidence that robots can motivate patients during therapeutic
procedures. Our sensor interface explores the possibility to
integrate a robotic agent into cardiac therapy. This work
presents an exploratory experiment for on-line assessment of
typical CR routines.

I. INTRODUCTION

Cardiovascular disease (CVD) refers to the conditions
that involve narrowed or blocked blood vessels that might
lead to a heart attack [1]. According to the World Health
Organization, around 17.5 million people die each year from
CVDs. This number represents approximately 31% of all
deaths worldwide. In the same manner, in 2015 two CVDs
were leading the death cause list in the world: ischaemic
heart disease (8.76 million deaths) and stroke (6.24 million
deaths) [2]. Also, more than 75% of CVDs deaths occur in
low-income and middle-income countries and around 80%
of all deaths from CVDs are a consequence of heart attacks
and strokes [2].

Cardiac rehabilitation (CR) is commonly used to prevent
CVDs or to treat a patient post a CVD event. CR covers
different areas, from nutrition and weight management
to assessment and management of depression, physical
exercise and comorbidities, to health education and medical
therapy, among others [3].

CR is necessary when a patient has suffered at least
one of the following health incidents within the last 12
months: acute myocardial infarction, coronary angioplasty,
heart or lung transplant, heart valve repair, percutaneous
coronary intervention, coronary bypass surgery, heart
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failure, tachycardia or fibrillation. The CR treatment can
be considered as a tool to enhance the quality of life of
patients who have suffered a CVD and as a prevention tool.
CR is related to physical activities or exercises for improving
physical and mental levels aiming to recover an optimal
daily living [4]. The main objective of the physical activities
is to decrease coagulability, increase fibrinolysis, improve
endothelial function and endothelium-depend vasodilation;
leading to an overall improvement of myocardial flow.
Physical activity also improves peak cardiac output, heart
rate, stroke volume and reduces exercise intolerance.

CR is indispensable for patients who have suffered a CVD.
Consequently, there is a high demand for CR services, and
there is currently a higher demand than what is typically
on offer in health institutions [5]. Additionally, not all
the patients who had a CVD are enrolled onto CR. For
example, a study in England [6] showed that only between
14% and 23% of infarct patients actively continue with the
program, suggesting that CR is not a process with patients
fully engage. This might be due to a common therapeutic
program consisting of a large number of monotonous
exercise routines.

II. CARDIAC REHABILITATION

CR differs depending on the country of application, how-
ever, it is usually divided into three or four phases [7].
In Colombia, the Instituto de Cardiologia at Fundacién
Cardioinfantil implements a protocol that consists of three
phases: Phase I or inpatient phase takes place within 48
hours after a cardiovascular event. The beginning of this
phase occurs when the patient is hemodynamically stable.
In this phase, the patient performs passive movements in
order to maintain muscular tone and to reduce risks or
any complication. Phase II is an outpatient phase, which
begins immediately after the patient leaves the hospital, lasts
around 3 months and consists of weekly sessions (three times
per week approximately). This phase includes an education
program covering risk factors, healthy habits, adhesion to
the treatment, motivation and exercise control. Phase III
has an average time duration of nine months with one or
two sessions per week. The objective is to reinforce the
information and habits gained during the previous phase.
The main challenge is assuring the patient’s adherence to
the program.

CR facilities are a blend between clinical and exercise train-
ing settings [8]. Usually, studies related to CR use exercises
with treadmills, stairs or cycloergometers, as this equipment
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allows the administration of stress tests of varying levels
(usually, called graded exercise tests). Stress tests are often
performed within the first few weeks after a cardiac incident,
and commonly use treadmills, where speed and inclination
increase progressively through different stages of the test [8].
CR relies on the necessity to evaluate and control the current
state of the patient. These variables depend on three main
metrics:

« Cardiopulmonary parameters: these measure signifi-
cant parameters such as peak oxygen uptake, peak work
rate, peak ventilation rate, peak heart rate, heart rate
variability and evolution of heart rate for tracking the
complications within the cardiopulmonary system [9].

o Gait spatiotemporal parameters: these study the
biomechanical performance during the exercise. How-
ever, the assessment varies depending on the routine or
platform used for the therapy. For instance, when the
exercise is performed using a treadmill, gait assessment
is desirable, hence, parameters such as cadence, step
length and speed are used to analyze the gait.

« Physical activity difficulty parameters: these evaluate
the exercise difficulty in terms of physical parameters,
this is assessed through questionnaires or qualitative
interpretations such as the Borg Scale. The Borg Rating
of Perceived Exertion (RPE) [10] is a way of measuring
physical activity intensity level.

Although several commercial sensor systems allow the con-
tinuous measurement of cardiopulmonary parameters and the
assessment of the patient’s status, they are not aimed to
clinical applications. For instance, Polar Incorporated [11]
develops several products which are aimed to on-line assess
and report vital signs for physical training. These sensors
also allow to regulate the phases (warm up, training and cool
down) in a physical training session and notify the user if
any parameter is out of range. However, these sensors do not
allow to continuously acquire the physical activity difficulty
parameters and do not provide real-time monitoring of the
gait spatiotemporal parameters.

In the context of CR at the Instituto de Cardiologia at Fun-
dacién Cardioinfantil, these parameters are usually measured
by means of several sensors. Additionally, the data manage-
ment is manually registered by the therapist. Under these
circumstances, this paper presents a sensor interface for on-
line measurement of a set of variables commonly evaluated in
CR using a treadmill for Phase II. These variables correspond
to the cardiac patient’s status, the physical activity levels (i.e.
gait spatiotemporal parameters) and the difficulty perception
using the Borg scale [10]. This interface opens the possibility
of providing biofeedback during a CR session, where the
optimal training effects generally depend on an appropriate
feedback about the performance [12]. Additionally, there is
evidence that biofeedback systems in parallel with functional
task training intend to increase patient motivation. Besides
that, the patient could progress toward a specific goal by
means of the incorporation of patient’s senses and challenges
[13].

This work has two objectives, on the one hand, to provide
a tool for clinicians to assess the patient’s status during
CR. On the other hand, as there is evidence (presented in
Section III) that robots could motivate patients for therapeutic
procedures, this sensor interface opens the possibility to
integrate robotic agents into the cardiac therapy. Hence, an
exploratory experiment to establish Human-Robot Interaction
is presented in this paper. The task of the robot is to track the
sensor readings and give feedback to the patient depending
on the current and previous session’s data, in order to create
a personalized therapy assistant.

III. RELATED WORK

This section describes some of the robotic applications that
have been developed in the context of CR. It is divided into
two approaches: Assistive Robotics and Socially Assistive
Robotics.

Assistive Robotics (AR) is the field of robotics for assistive
and supportive robotics applications in physical and non-
physical interactions. In the context of CR, robotic physical
assisted therapy is a promising method for its implementation
in the rehabilitation of patients who have suffered CVDs.
AR supports the patients in performing exercises and pro-
vides real-time feedback for guiding the exercises. Different
studies of AR as an application to CR have been developed
in terms of the commonly used robotic platforms.

For example, robotic tilt tables were tested for its imple-
mentation as a cardiopulmonary robotic-assisted treatment in
stroke patients [14]. This study concluded that this device is
feasible for incremental cardiopulmonary exercise training,
acceptable by patients and gives a positive cardiopulmonary
response.

Treadmill-based devices are the most prevalent robotic re-
habilitation methods, and Lokomat (Hocoma, Switzerland)
[15] the most clinically tested system. This device allows
controlling the hip and knee joints for the pelvic vertical
movements through the orthoses linked to the treadmill
frame. Lokomat is commonly used in the treatment of motor
disabilities. The effects of Lokomat in assisting physical
activities have been evaluated in CR [16].

Socially Assistive Robotics (SAR) shares with AR the goal
to provide assistance to patients, but it specifies assistance
through social interaction. Social robots perform tasks with
a high degree of autonomy for a natural interaction with the
patient [17].

However, SAR has not been fully explored in CR. According
to the literature, initially, SAR was aimed at aiding the nurses
for therapy and to overcome the nurse shortages in CR. In
this study, a “hands-off” physical therapy assistant, CLARA,
was developed [18], which aims to help patients in repetitive
and painful spirometry exercises. Cardiac patients have to
perform spirometry exercises to allow full expansion and
contraction of lungs. CLARA has a color tracking server
and a speaker to communicate with the patient, as well as a
bed detector. The robot navigates, interacts with the patient
and tracks the exercises. CLARA counts and records the
repetitions of the patients through a spirometer with color
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marks, which in turn are registered by the server. In the
end, CLARA reports the collected results and willingness
of the patient to the hospital staff. This study concluded
that the control strategy for all of CLARA’s functionalities
was performed successfully, and questionnaires showed that
people were more motivated during the session with the robot
resulting in an average satisfaction of 84.6%. Nevertheless,
this study was performed with healthy people and the authors
of the paper state that no clinical studies were conducted yet
for this area.

As aforementioned, this work presents a sensor interface
to on-line measure relevant variables during the therapeutic
sessions in CR (Phase II). As a matter of fact, these patients
usually perform exercises using a treadmill without aid or
support to develop movements. This work explores the use
of SAR in CR by means of the proposed sensor interface.
This interface integrates a Heart Rate monitor, a Laser Range
Finder (LRF) sensor to estimate the gait parameters and
an Inertial Measurement Unit (IMU) sensor to measure the
treadmill inclination. Additionally, a social robot is used to
periodically ask the Borg Scale level to the patient (voice
interface). After that, the user delivers the Borg Scale level
into the user interface (Tablet).

IV. METHODOLOGY

This work presents the development of a sensor interface
for CR on a treadmill. This system helps the therapist to
assess a group of patients on-line in order to reduce the risks
inherent to the therapy and measure their performance and
progress. Fig. 1 shows an example of CR using a treadmill
in Phase II, where the therapist personally and periodically
measures the state of the patient.

Fig. 1.  Current scenario of a CR based on treadmill at Instituto de
Cardiologia at Fundacién Cardioinfantil (Colombia).

As mentioned above, this interface measures three types of
variables selected by the medical staff measuring the patient’s
status during the therapy: cardiopulmonary parameters:
peak heart rate, heart rate variability and evolution of heart
rate, gait spatiotemportal parameters: cadence, step length
and speed and physical activity difficulty parameters:
Borg Scale and treadmill’s inclination.

A. Sensor Integration

As shown in Fig. 2, this system integrates measurements
from a heart rate monitor, an IMU (reporting the treadmill
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Fig. 2. Human-robot interface diagram used for cardiac rehabilitation.

inclination), a LRF (to estimate gait parameters) and periodic
results from the Borg scale, as well as a user interface
and an autonomous humanoid social robot platform, NAO
(SoftBank Robotics Europe, France). The system is designed
to present the three main metrics considered in CR measured
as follows:

o Gait spatiotemporal parameters: as shown in Fig.
2, an LRF node reports measurements from an LRF
which are used to estimate the cadence, step length, and
speed of the patient. The estimation of these parameters
was proposed and validated in a previous work [19].
This node estimates the parameters of the kinematics
of lower limbs and performs filtering of the oscillatory
components contained in the user movement intention
[19]. The speed is obtained through the product of gait
cadence (GC) and the gait step length from the leg
detection process.

o Cardiopulmonary parameters: a heart rate monitor
(Zehpyr HxM BT) is located on the chest of the user
and reports a wireless and continuous measurement of
the heart rate using Bluetooth communication.

« Physical activity difficulty parameters: two different
metrics are used to measure the physical activity diffi-
culty: the inclination of the treadmill and the reported
difficulty of the exercise. As the inclination can not
be accessed directly from the treadmill, a MPU9150
IMU is placed on the treadmill such that one of its
rotation angles corresponds to the main rotation axis
of the treadmill, thus, changes in the measured IMU
angle are equal to changes in the treadmill slope. A
tactile computer monitor (i.e. a tablet) uses a graphical
user interface to measure the patient’s fatigue using the
Borg scale as shown in Fig. 3. In the context of a CR
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supported by a social robot, a NAO robot periodically
asks the patient to report a value on the Borg scale
which is entered on the tablet.
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Fig. 3. User interface used to assess the patients fatigue, view the therapy
parameters as a form of feedback, configure the robot, monitor sensors and
control the therapy performance.

All of these sensors have different transmission rates and
sampling frequencies which represent an issue in terms
of on-line synchronization. To tackle this issue, a node is
associated to each sensor which allows the main computer
to have access in real time to the measurements. These
nodes are designed as drivers of the incoming raw sensory
data when the module is ready to acquire information.
Therefore, a downsampling is performed by each node
with a configurable sampling frequency (for this study,
the configured sampling frequency for each node is set
to 10Hz). Each module stores all the information in an
internal backup, which allows recovering the data in case
of any unexpected disconnection. These logs can also be
used after the interaction by the medical team to evaluate
the efficiency of the therapy.

The whole system is controlled by a therapy manager,
which performs another downsampling in order to acquire
simultaneous data from the sensor nodes (with a sampling
frequency of 1Hz). In the same manner, the therapy manager
is also able to control each processing module. The system
includes a NAO robot which can be used to engage the
user during the therapy. Currently, the robot is only used
to ask the Borg Scale level and to provide feedback of the
acquired parameters but in the future, the robot will be
used in a more complex and personalized interaction aiming
to increase the motivation and reduce the desertion of the
patient.

As shown in Fig. 2 and Fig. 3, the patient has access
to two main feedbacks from the system: the graphical
user interface reports the synchronized and processed data
from the sensors and the social robot periodically verbally
informs the patient the status of the session, through the
physiological variables, the expected values, the therapy
time, or asks for the Borg Scale levels.

B. Data management

The data management system is designed to capture
information from the therapy divided in two groups: (1)

Basic information of the patient such as: name, age, gender
and height. (2) Sensors’ readings, such as: relevant events
that occurred during the session, average data, and score of
the therapy.

The storage procedure is carried out by a database handler
which generates backup files at run-time, where all the
measurements are stored. In case that any event is generated
during the session, the database handler capture the event
type, the reason that causes the event as well as some
parameters related to it. Once the session has finished, there
are two more processes that the database handler has to
run: (1) Data wrapping, which structures all the information
in the correct way to be stored on the database. (2) Data
transferring from the backup files to the database.

The whole data is stored at the end of the session on a
local MongoDB database. MongoDB is a well known non-
relational database system that handles all the information
as documents and data collections, this system was chosen
because in future works the data analysis is meant to be
performed using a frequency map enhancement technique
[20], which was designed to obtain and process information
collected from a MongoDB-based database.

C. Pilot study protocol

In order to validate the interface, a pilot study was con-
ducted. As shown in Fig. 4, one healthy male (1.71 m, 63 Kg,
24 years old), without apparent physical contraindications to
treadmill training, participated voluntarily in this study. The
protocol was designed in order to simulate the treadmill part
in an average CR protocol and to test the response of the
parameters to a change in speed and inclination. Initially,
the subject walks at 3 m/s on the treadmill for 10 minutes,
then, the speed is increased to 5 m/s and the inclination
is increased until its maximum (3.7°). The subject walks in
those conditions for 10 minutes. Finally, the subject stands
still during 8 minutes to simulate the cool down phase and
in order to observe the decrement in the heart rate after the
exercise. The setup for this experiment can be seen in Fig.
4.

Fig. 4. Patient exercising on treadmill according to the pilot study protocol.
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V. RESULTS AND DISCUSSION

According to the protocol described in the methodology
section, the interface was on-line for 28 minutes. Fig. 5-7
present the continuous record of each parameter as collected
by the therapy manager. The two vertical lines correspond to
the two events: in green the increase of speed and inclination
and in red the end of the physical activity and the start of
the cool-down phase. Results are divided according to the
three main metrics that were expected to be measured.

A. Gait spatiotemporal parameters

The patient’s gait spatiotemporal parameters can be seen
in Fig. 5. All of these parameters change instantaneously
after an event, which indicates that the processing and feature
extraction module is not interfering with the acquisition. All
of the values are in a normal range and correspond to the
values that can be seen on the display of the treadmill.
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Fig. 5. Gait spatiotemporal parameters: patient’s cadence (a), step length
(b) and speed (c).

B. Physical activity difficulty parameters

The treadmill’s inclination and the reported Borg scale
data are shown in Fig. 6. The inclination curve shows clearly
a sharp increase or decrease of the value following each
event. As no change of the inclination was executed between
events, the value stays constant except for small oscillations
due to the impact of the steps of the patient on the treadmill.
The Borg scale shows a continuous increase for the first 20
minutes of the session as the perception of fatigue increases
during that period. The value decreases during the 8 last
minutes and stabilizes. It is important to highlight that the
Borg scale is a subjective measure.

C. Cardiopulmonary parameters

Fig. 7 shows the patient’s heart rate during the session. As
shown by the rapid increase and decrease of heart rate, the
zephyr sensor has a response fast enough to be used in real
time to report the heart rate and react to the events during
the therapy. The absence of a clear convergence is due to
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Fig. 6. The physical activity difficulty parameters: (a) Treadmill inclination
angle recorded using the MPU9150 IMU sensor and (b) Patient’s fatigue
obtained from the user interface.

the physiological response of the cardiac system. The values
in the signal change according to the normal range of heart
rate in healthy patients with similar conditions in comparison
with the voluntary patient. For example, when the patient
was walking at the beginning, the heart rate was around
105 BPM, and when the velocity increased to 5 meters per
second, the heart rate was around 145 BPM which represents
a moderate effort.
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Fig. 7. Heart rate measurement using the HXM zephyr sensor.

VI. CONCLUSION

The results presented in this paper show the potential of
this sensory system combining a laser range finder, a heart
rate monitor, an IMU, and a graphical user interface for
CR using a treadmill. Spatiotemporal gait parameter can be
estimated from the LRF results, which can be used as an in-
dication of the performance of the patient in the rehabilitation
therapy, and the correctness of the gait. The system presented
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combines information from different sensors to present these
values in real-time to the patient and store them in a log for
post-hoc analysis by medical staff. The Borg scale collected
by the user interface can be combined with the slope of the
treadmill and the heart rate to evaluate the difficulty of each
session.

These variables can be presented in real-time to the patient,
and the logs can be used by the medical team supervising the
rehabilitation to plan the following therapy session. Based on
the fact that the measurements are on-line, allows recording
the physiological indicators, such as the heart rate, in a more
precise time, during or after the exercise, compared to the
current situation where the measurements are taken by the
medical staff.

In future work, these sensory inputs will be used by a
personalized social robot to track the progress of the patient
over multiple sessions, keep the patient engaged in the
therapy with the aim of reducing their exertion level due to
the exercise. These real time sensor values can also be used
to detect events indicating a risk for the patient such that the
robot can notify the nurse or the therapist, for example, if
the heart rate is too high and presents a risk for the patient.
The results highlight the possibility of implementing the
proposed interface to record data during a CR. The in-
terface allows processing the data, its correspondent on-
line visualization, and a recording for post-treatment. The
parameters of inclination and speed as indicators of the
difficulty of the exercise can be used either as an on-line
feedback for the patient or as a follow up of the performance
of the patient. It could be a tool for the multidisciplinary
group that supervise the rehabilitation process to plan the
following therapy sessions. Similarly, gait spatiotemporal
parameters could be an indication of performance and a
useful information for the medical staff and the patient.
Further, the on-line measure of heart rate could allow the
development of algorithms to detect events that may indicate
a risk for the patient and a reaction to those events. For
instance, the robot could call the medical staff in those cases.
This on-line measure also allows to take some indicators
such as the decrement of the heart rate at one minute of
two minutes after the end of the treadmill exercises more
precisely than if they are taken for the medical staff. These
indicators are used as important parameters for health care,
progress on the therapy and mortality risk assessment in CR.
Finally, to have the recordings of all those parameters could
be useful for future research and assessment of progress.
The development of this interface is a first step on the
proposal to integrate social robotics into CR. Based on
previous studies on social robotics it is hypothesized that
SAR could be helpful to the medical staff, reduce risk of the
therapy by identifying risk factors, increase performance of
the patient and increase its motivation and engagement.
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